

HEALTHCARE INNOVATIONS CONFERENCE

New Technologies in Healthcare

Nov. 14, 2018 Rochester Riverside Hotel

www.pandionalliance.com

Telehealth and Mobile Measures in Parkinson's Disease

11:15 am– 12:15 pm | Gleason

Jamie Adams, MD

The University of Rochester Medical Center

Thank you to our supporting participants

We are grateful for the support of sponsors

CNE Credits

If you are interested in receiving **Continuing Nursing Education Credits*** for participation in this conference, please remember to sign the attendance log after each session *(located in the back of the breakout rooms)*

*To receive your credit hours, you must stay for the full conference.

Wi-Fi Access

The internet access is: RadissonRochesterRiverside

There is no password needed

Telehealth and Mobile Measures in Parkinson's Disease

11:15 am– 12:15 pm | Gleason

Jamie Adams, MD

The University of Rochester Medical Center

Telehealth and Mobile Measures in Parkinson's Disease

Jamie Adams, MD Assistant Professor Department of Neurology Center for Health & Technology University of Rochester Medical Center

Outline

- Technology in Research Overview/Rationale
- Virtual Visits in Clinical Trials
- Mobile Measures
- Telehealth in Clinical Care

Outline

- Technology in Research Overview/Rationale
- Virtual Visits in Clinical Trials
- Mobile Measures
- Telehealth in Clinical Care

The global burden of Parkinson disease is rising

Source: Dorsey ER, Bloem BR, The Parkinson Pandemic: a call to action. JAMA Neurology 2017

Current clinical assessments are subjective, categorical, insensitive, and episodic

Assessment of motor function in Parkinson disease

3.4 FINGER TAPPING

<u>Instructions to examiner</u>: Each hand is tested separately. Demonstrate the task, but do not continue to perform the task while the patient is being tested. Instruct the patient to tap the index finger on the thumb 10 times as quickly AND as big as possible. Rate each side separately, evaluating speed, amplitude, hesitations, halts and decrementing amplitude.

- 0: Normal: No problems.
- 1: Slight: Any of the following: a) the regular rhythm is broken with one or two interruptions or hesitations of the tapping movement; b) slight slowing; c) the amplitude decrements near the end of the 10 taps.

R

L

- 2: Mild: Any of the following: a) 3 to 5 interruptions during tapping; b) mild slowing; c) the amplitude decrements midway in the 10-tap sequence.
- 3: Moderate: Any of the following: a) more than 5 interruptions during tapping or at least one longer arrest (freeze) in ongoing movement; b) moderate slowing; c) the amplitude decrements starting after the 1st tap.
- 4: Severe: Cannot or can only barely perform the task because of slowing, interruptions or decrements.

Source: Movement Disorders Society. United Parkinson Disease Rating Scale, 2008

These rating scales lead to false and missed signals of efficacy

Recent phase 3 trials in neurodegenerative disorders that failed to replicate phase 2 findings							
Drug	Disease	Phase 2 Findings	Phase 3 Findings	N	Duration	Sponsor	Phase 3 Cost
Creatine	Parkinson disease	2.8 points improvement on total UPDRS over placebo	Failed, study terminated early due to futility	955	5 years	NIH	~\$25 million
Coenzyme Q ₁₀	Parkinson disease	1.2-5.3 points improvement on total UPDRS over placebo	Failed, study terminated early due to futility	600	16 months	NIH	~\$14 million
Idalopirdine	Alzheimer disease	2.1 points improvement on ADAS-Cog over placebo	Failed, unchanged ADAS-Cog	2525	24 months	Lundbeck	~\$600 million
Solanezumab	Alzheimer disease	1.9 points improvement on ADAS-Cog over placebo for lowest dose	Failed, unchanged ADAS-Cog	2100	18 months	Eli Lilly	~\$600 million
Gammagard	Alzheimer disease	5.4 points improvement on ADAS-Cog over placebo	Failed, unchanged ADAS-Cog	390	18 months	Baxter	~\$30 million
Coenzyme Q ₁₀	Huntington disease	0.34 point improvement on Total Functional Capacity over placebo	Failed, study terminated early due to futility	609	5 years	NIH	~\$22 million
Pridopidine	Huntington disease	1.0-1.2 point improvement on modified motor score over placebo in two trials	Failed, no significant improvement	400	6 months	Teva	~\$100 million

UPDRS = Unified Parkinson's Disease Rating Scale; ADAS-Cog = Alzheimer's Disease Assessment Scale – Cognitive subscale

Sources: Dorsey ER, Papapetropoulos S, Xiong M, Kieburtz K. The First Frontier: Digital Biomarkers for Neurodegenerative Disorders. Digit Biomark 2017

Atri A et al. Effect of Idalopirdine as adjunct to cholinesterase inhibitors on change in cognition in patients with Alzheimer disease: three randomized clinical trials. JAMA 2018

New tools can uncover new details about disease

Future trials will incorporate new tools that transform clinical trials

Characteristic	20th Century	21st Century
Study design	Randomized, double- blind, parallel-group, placebo-controlled trial	Randomized, double-blind, parallel-group, placebo-controlled trial using adaptive designs
Study population	All comers with a given disease	Individuals selected based on phenotypic and genetic results
Study recruitment	Clinical practices	Global clinical trial registries and social networks organized by
Trial visits	In person and audio calls	In person and audio and video calls
D.I.		
Data management	Paper and electronic forms	Electronic forms
Data management Participant feedback	Faper and electronic forms Limited, delayed	Almost universal, approximately real time
Data management Participant feedback	Paper and electronic forms Limited, delayed Insensitive	Almost universal, approximately real time Sensitive
Data management Participant feedback	Paper and electronic forms Limited, delayed Insensitive Episodic	Almost universal, approximately real time Sensitive Frequent or continuous
Data management Participant feedback Outcome	Paper and electronic forms Limited, delayed Insensitive Episodic Subjective	Almost universal, approximately real time Sensitive Frequent or continuous Objective
Data management Participant feedback Outcome measures	Paper and electronic forms Limited, delayed Insensitive Episodic Subjective Provider centered	Almost universal, approximately real time Sensitive Frequent or continuous Objective Patient centered
Data management Participant feedback Outcome measures	Paper and electronic forms Limited, delayed Insensitive Episodic Subjective Provider centered In clinic	Almost universal, approximately real time Sensitive Frequent or continuous Objective Patient centered Remote

New model for clinical trials

Outline

- Technology in Research Overview/Rationale
- Virtual Visits in Clinical Trials
- Mobile Measures
- Telehealth in Clinical Care

Virtual studies offer many advantages over traditional site-based approaches

Comparison of the traditional and virtual research models			
Characteristic	Traditional Model	Virtual Model	
Geographic Reach	Determined by site location	Determined by internet access	
Sites	Many	One	
Institutional Review Boards	Many	One	
Time to initiate study	Long	Medium	
Investigators	Many	Few	
Time required for visits	Long	Short	
Variance in assessments	High	Low	
Burden on participants	High	Low	
Cost	\$\$\$\$	\$\$	

National studies can be conducted from single sites

Map of participants in a virtual research study

Source: Journal of Parkinson's Disease, 2015; 5: 505-515

Research participants like virtual visits

Source: Journal of Parkinson's Disease, 2015; 5: 505-515

Virtual visits are being used for longitudinal follow-up of large clinical trials (AT-HOME PD)

Objective: To leverage modern technology to develop, pilot and implement a 100% virtual model for long-term follow up of clinical trial cohorts utilizing telemedicine and smartphone platforms for quantitative monitoring of clinician- and patient-reported outcomes.

Outline

- Technology in Research Overview/Rationale
- Virtual Visits in Clinical Trials
- Mobile Measures
- Telehealth in Clinical Care

Mobile technologies can enable more objective, sensitive, and frequent measures of PD

Smartphone and wearable sensor studies in neurology, 1992-2017

Source: PubMed searches of smartphone and wearable sensor studies for neurology and associated conditions on 12/31/2017

New tools enable research to be conducted at unprecedented scale and scope

Geographical representation of study participants (N~1000 participants)

Source: Smartphone PD

Smartphone research apps contain surveys, structured tests, and passive monitoring

●●●○○○ Verizon 훅 2:59 PM 🌜 🕇 📾 🖗 49% 💶 🕨	••••• AT&T 4G 17:24 7 8 8 67% +	••••• \$ 9:41 AM 100%
Activities	Step 5 of 6 Cancel	Step 1 of 7 Cancel
Today, March 30 To start an activity, select from the list below. Tapping Activity 30 Seconds Voice Activity 30 Seconds (3)	Say "Aaaaah" into the microphone for as long as you can.	Gait and Balance Test This test measures your gait and balance as you walk and stand still. To complete this test, you'll need to put your phone in your pocket and connect headphones to follow audio instructions.
Walking Activity 1.5 Minutes Memory Activity		∞ 20 steps
 2 Minutes My Thoughts (Anytime) 2 Questions 	0:04	20 steps
O Study Feedback (Anytime) 1 Question		
Activities Dashboard Learn Profile		Get Started

A mobile Parkinson disease score has been developed using a smartphone application

The mobile Parkinson disease score reveals inter-day variation that the traditional assessments miss

Smartphone apps can detect responses from medications

Comparison of change in mPDS and MDS UPDRS Part III between the OFF and ON medication states

Despite the many benefits of health applications, they still face challenges

Limitation	Description	Solution
Selection bias	Most health applications and research studies are only available on iPhone	 Make health applications available on Android devices 77% of Americans currently own smartphones
Retention	After initial interest in health applications interest and use wanes	 Increase valuable feedback to participants Provide data relative to other participants Predict course of disease Increase engagement with healthcare team
Privacy	Study participants are concerned over the privacy of their health data	 Disclose who has access to data Give study participants ability to choose who gets their data and for what purpose
Validation	Health applications need to be validated and their efficacy determined	 Validate health applications in in-person observational studies Use in clinical trials for validation

Source: http://www.pewresearch.org/fact-tank/2017/01/12/evolution-of-technology/

Wearable Sensors

We evaluated wearable sensors for Parkinson disease and Huntington disease

MC10 BioStampRC

Sensor-MD Overview:

- We enrolled 56 participants
 - 16 with Parkinson disease
 - 15 with Huntington disease
 - 5 with prodromal HD
 - 20 without a movement disorder
- Participants wore 5 sensors on their chest and limbs

Sensors can distinguish between individuals with and without movement disorders

Comparison of gait between an individual with HD and a control

Source: Adams et al. Multiple wearable sensors in Parkinson and Huntington disease individuals: a pilot study in clinic and at home. *Digital Biomarkers* 34 2017

Not only can sensors track known motor symptoms over time...

Frequency and severity of tremor detected over one hour period

Source: Adams et al. Multiple wearable sensors in Parkinson and Huntington disease individuals: a pilot study in clinic and at home. *Digital Biomarkers* 2017

...but can also capture novel data objectively and continuously in clinic and at home

Proportion of day individuals spend lying down, sitting, standing, and walking

Source: Adams et al. Multiple wearable sensors in Parkinson and Huntington disease individuals: a pilot study in clinic and at home. *Digital Biomarkers* 2017

In collaboration with MIT, we are now using cellular waves to monitor gait and movement

Video analytics are another emerging tool for measuring disease

Electronic Consent Form

Remote data collection to objectively quantify the severity of Parkinson's disease

Click here to download the consent form

Please click the "Yes" button to enroll in the study. If you choose not to participate, there will be no penalty to you. A blank copy of this consent form can be downloaded from this attachment for your review prior to providing consent. Please keep this copy for your records.

· Being in this study is voluntary - it is your choice . You can change your mind and stop at any time.

- If you choose not to take part, your (routine medical care, employment status, educational status, etc.) will not be changed in any wa
 There are risks from participating and you should understand what these mean to you.

Do you agree to participate in this study? You may revoke your consent at any time

l disagree

Requires only webcam, microphone and an internet connection.

Click the tab to expand

Outline

- Technology in Research Overview/Rationale
- Virtual Visits in Clinical Trials
- Mobile Measures
- Telehealth in Clinical Care

Access to PD care is limited and has adverse health and economic consequences 15% more likely to have a hip fracture 40% of individuals with PD do not see a neurologist 20% more likely to be placed in a skilled nursing facility Those who do not see a neurologist are... 20% more likely to die RIP

Sources: Willis AW et al. Neurologist care in Parkinson disease: a utilization, outcomes, and survival study. *Neurology* 2011. Willis AW et al. Neurologist-associated reduction in PD-related hospitalizations and heath care expenditures. *Neurology* 2012

New models bring care to patients rather than patients to care

Virtual visits flip the care paradigm

Patient time spent on in-person versus telemedicine visits

Connect.Parkinson: a national randomized controlled trial of telemedicine in PD

Aims

- 1. To demonstrate the feasibility of using telemedicine to deliver specialty care into the homes of individuals with PD
- 2. To evaluate its effect on quality of life
- 3. To assess the impact on quality of care
- 4. To evaluate the value of the approach to decrease caregiver burden, save time, and reduce travel

Connect.Parkinson was conducted nationally

In collaboration with:

Patients like virtual visits

Source: National randomized controlled trial of virtual house calls for Parkinson disease. Neurology 2017

Who: Any New Yorker with Parkinson disease

What: Multidisciplinary care including virtual visits with a Movement Disorders specialist

Where: New York state, especially the 9 counties surrounding Rochester

When: Now

Why: To provide comprehensive PD care to residents of New York state, especially the underserved

Supported by: Greater Rochester Health Foundation and the Edmond J. Safra Foundation

For more information: <u>www.pdcny.org</u>

We are reaching patients throughout New York state

Take-home points

- Technology is pushing the migration of care and research from the hospital/clinic to the home
- Telemedicine and mobile tools are poised for exponential growth and can improve research and clinical care for our patients

UR Named National Center of Excellence for Parkinson's Research

Wednesday, October 03, 2018

The University of Rochester has been selected as a Morris K. Udall Center of Excellence in Parkinson's Disease Research by the National Institute of Neurological Disorders and Stroke (NINDS). The new \$9.2 million award brings together researchers from industry and multiple academic institutions to focus on the development of digital tools to enhance understanding of the disease, engage broad populations in research, and accelerate the development of new treatments for Parkinson's disease.